Multi-agent LLM System

Blueprint for Telecoms

November 2025

Silent Comet Team

o
o amartus ®© décomo Business

Part of the NaaS Accelerator Program

MPLIFY

https://www.mplify.net/engage/naas-accelerators

Table of contents

1 Introduction 6
1.1 Why this framework exists 6
1.2 Framework overviewo e 6
1.3 Readingguide e e e e e e 9

2 Execution lifecycle 10
2.1 Adapted workflow ataglance 10
2.2 Phase 1: Scoping (Project definition) 11
2.3 Phase 2: Data (Knowledge & context) 12
2.4 Phase 3: Modeling (Agent design, ML integration & evaluation) 14
2.5 Phase 4: Deployment (Production, ML Ops and monitoring) 16
2.6 Puttingitalltogether L 18

3 Architectural viewpoints 20
3.1 Data & Model Lifecycle viewpoint 21
3.2 Governance, Risk, and Compliance viewpoint 22
3.3 Runtime/Process (Execution Topologies) viewpoint 23
3.4 Capability/Development viewpointt 24
3.5 Physical/Infrastructure viewpoint 25
3.6 End-to-End Scenario viewpoint Lo 26
3.7 Applying viewpoints incrementally 27

4 Key metrics & KPlIs 31
4.1 Metrics by lifecyclephase Lo oo o 31
4.2 Metrics by architectural viewpoint L. 32
4.3 Telecom-specificKPIs e 33
4.4 Metric interdependencies and trade-offs 34
4.5 Application guidanceo 36

5 Framework in action 37
5.1 Multi-agent reference architecture 37
5.2 Usecasevalidation i 41
5.3 Implementationroadmap e e 44
5.4 Conclusions e e e e e e e e e e e 45

6 Summary 47
6.1 Framework validation: problems solved 47
6.2 Final recommendations Lo 50
6.3 Closing perspective e e e e e e e 51

o
—e amartus
[] []

® ddcomo Business

Table of contents

Appendices

A ML Workflow Blueprint - Key Aspects

A.1 Phases descriptions
A.2 Do’sand don’tsbystage

o
—e amartus
[] []

® décomoBusiness

List of Figures

1.1 Architectural viewpoints populated by lifecycle phases 7
1.2 The measurable flywheel: each iteration compounds value and organizational
learning L e e e e e e e e e e e e e e 8

2.1 Lean agent system lifecycle showing iterative workflow phases with feedback loops 10
2.2 Three-layer architecture showing Foundation (data/models), Orchestration
(agents/workflow), and Integration (APIs/interfaces) 12

5.1 Three-Layer Agent Architecture for Telecom 38

.0:0. amartus C o l t ® décomoBusiness

List of Tables

3.1
3.2

4.1
4.2
4.3
4.4
4.5

5.1

6.1

6.2

Viewpoint adoption progression aligned with lifecycle phases 28
Viewpoint-to-phase integration matrix showing artifact flows 29
Lifecycle phase metrics summaryo e e 31
Viewpoint metrics SUMmary v v v v v e e e e e e e e e e e e 32
Network operations KPIs i v i v v v it e e i 33
Customer operations KPIs e 34
Leading-to-lagging metric relationships 35
Framework adaptation acrossusecases oot 43
Execution validation: Delivery and integration obstacles addressed through frame-

workdesign L L e e e e e e e 47
Governance validation: Risk mitigation through architectural implementation . . 49

.0:0. amartus C o l t ® décomoBusiness

1 Introduction

1.1 Why this framework exists

Telecom operators face a predictable Al adoption trap: proof-of-concept demos that never reach
production, escalating costs without measurable ROI, and compliance gaps that surface too late.
The root cause isn’t purely technical - it’s structural. Teams lack a shared language between
Technology, Operations, Risk, and Finance, which leads to diffuse scope, brittle prototypes, and
governance treated as an afterthought.

The pattern repeats across operators: an executive sponsors an Al pilot for network troubleshooting
or service order automation. The team builds an impressive demo in weeks. Then reality hits -
nobody defined baseline KPIs, the system retrieves outdated network documentation, production
traffic reveals 30% hallucination rates, cost per interaction exceeds manual processing, and
compliance demands audit trails that don’t exist. Six months later, the pilot is quietly shelved,
stakeholders are fatigued, and the organization concludes “Al isn’t ready for telecom.”

The underlying failure modes appear consistently: undefined ROI metrics, data overreach de-
laying time-to-value, fragile prototypes lacking governance, uncontrolled costs eroding business
cases, and disconnected ML assets that can’t integrate into operational workflows. That said,
these obstacles are addressable through intentional design choices validated across production
deployments.

This framework offers a pragmatic adoption route: start with one scoped, high-value process,
prove measurable uplift quickly, keep the architecture intentionally lean and expand only when
KPIs validate the investment.

1.2 Framework overview

The framework integrates two complementary perspectives that evolve together, aligning Tech-
nology, Operations, Risk/Compliance, and Finance around a shared language of value, control,
and scalability:

Four-phase execution lifecycle (Chapter 2) drives project through Scoping — Data — Modeling
— Deployment, with feedback loops enabling continuous refinement.

Six architectural viewpoints (Chapter 3) capture decisions and govern evolution, transforming
lifecycle artifacts into durable governance assets (see Figure 1.1).

[]
R amartus ® ddcomo Business

1.2. Framework overview 7

These aren’t parallel perspectives - they’re integrated lenses on the same system. Lifecycle phases
produce artifacts for architectural views; viewpoints define what is important to look at and
document in each of the stages.

Data & Model Governance, Runtime/

Lifecycle Risk & Compliance Process
Capability/ Physical/ End-to-End

Development Infrastructure Scenario

Figure 1.1: Architectural viewpoints populated by lifecycle phases

Lifecycle phases produce concrete artifacts: Scoping establishes KPI baselines and boundaries;
Data curates GOLD knowledge sets with quality gates; Modeling builds evaluated prompts,
tools, and ML integrations; Deployment monitors quality, cost, and governance with rollback
capability.

Viewpoints provide the interpretive and organizational framework for how these artifacts are

o
o, ama rtus CO lt ® décomoBusiness

1.2. Framework overview 8

used, combined, and understood. They transform these artifacts into governance assets. Teams
may start with three core viewpoints (Data & Model Lifecycle, Runtime/Process, End-to-End
Scenario) and layer in others as the system matures. Every production trace maps back to versioned
decisions across viewpoints, which helps prevent architectural drift.

This integration creates a measurable flywheel where each iteration builds on the last, accelerating
delivery and reducing risk.

Curated
Context

Evaluated
Agents

Scoped
KPI Gap

Refined Scope
or Expansion

Governed
Deployment

Telemetry &
ROI

Figure 1.2: The measurable flywheel: each iteration compounds value and organizational learning

The cycle begins with a scoped KPI gap - a specific, measurable problem to solve. Teams
curate focused context from GOLD knowledge sets rather than indexing everything. They build
evaluated agents with automated quality gates ensuring citations, cost controls, and performance
thresholds. These agents enter governed deployment with policy enforcement, immutable audit
trails, and rollback procedures. Production generates telemetry and ROI data - real metrics on
quality, cost, user satisfaction, and business impact. This evidence informs the next iteration:

[]
R amartus ® ddcomo Business

1.3. Reading guide 9

either refining scope to address gaps revealed by production usage, or expanding to adjacent

use cases using proven components. Each cycle compounds organizational learning, reusable

assets, and stakeholder confidence.

1.3

Reading guide

The chapters are structured to support both linear and selective reading:

Chapter 2 - Four-phase execution lifecycle (Scoping — Data — Modeling — Deployment)
with practical guidance and phase-specific KPIs. Essential for implementation teams.
Chapter 3 - Six architectural viewpoints that capture decisions and enable governance.
Includes the critical Governance, Risk & Compliance view (Section 3.2) and End-to-End
Scenario validation (Section 3.6). Essential for architects and compliance teams.

Chapter 4 - Comprehensive KPI catalog organized by lifecycle phase and architectural
viewpoint, with telecom-specific metrics (MTTR, truck roll avoidance, FCR). Essential for
defining baselines and success criteria.

Chapter 5 - Practical use of the framework with real-life example of three-layer multi-agent
architecture pattern, validated through production use cases (service recovery, network
design, troubleshooting). Essential for solution architects and platform teams.

Appendix A (Appendix) - Classical ML workflow context for readers less familiar with
data science practices, showing how traditional model development aligns with the agent
lifecycle.

Suggested reading paths: Executives and governance stakeholders should focus on this intro-
duction, Chapter 3, and Chapter 5. Implementation teams should follow the full sequence from
Chapter 2 through Chapter 5.

Throughout the document, you will find practical advice and callouts.

@ Practitioner’s Perspective

Practitioner’s Perspective callouts highlight practical, field-tested advice from real-world
solution builders throughout this chapter. These sections distill lessons learned and best
practices to help readers avoid common pitfalls and accelerate successful implementation.

[]
R amartus ® ddcomo Business

10

2 Execution lifecycle

This chapter adapts the classical ML lifecycle (Appendix A) into a compact, action-oriented
playbook for telcos. The goal is practical: achieve fast, controlled, and measurable Al outcomes
while keeping the work reversible and auditable.

2.1 Adapted workflow at a glance

Figure 2.1: Lean agent system lifecycle showing iterative workflow phases with feedback loops

Many projects that combine Al and agents run into similar obstacles: unclear scope, overly
ambitious data collection, fragile prototypes, and missing cost or quality governance. The workflow
below is intentionally lean and reversible:

1. Scope tightly - pick a single process and define unambiguous success metrics.

2. Curate a small, trusted knowledge core - prioritize quality over raw volume.

3. Design and validate the “brain” (prompts, tools, and evaluation) before investing in
large-scale tuning.

4. Deploy with guardrails - monitor quality, latency, and cost, and ensure the ability to roll
back within minutes.

[]
R amartus ® ddcomo Business

2.2. Phase 1: Scoping (Project definition) 11

Feedback arrows in the diagram indicate continuous improvement: production issues (slower-than-
expected responses, missing facts, or rising inference cost, for example) should trigger targeted
adjustments in earlier phases rather than broad rewrites.

2.2 Phase 1: Scoping (Project definition)

Objective: Identify a sharply defined, low-friction win that demonstrably proves value.

2.2.1 Core activities

* Domain & use case selection - pick a high-impact process that is low in hidden complexity.
Deliverables should include precise inputs and outputs, a clear rule for when the agent
should act instead of a human, and identified failure modes with fallback actions.

» Agent design - start with a single agent for linear workflows. Introduce specialist or validator
agents and conventional ML components only when differences in data type (for example,
time-series KPIs versus tabular SLA metrics or images), complexity, or scale make them
necessary.

» Stakeholder alignment - map value to roles (RACI), set communication expectations, and
curtail unmanaged “shadow” solutions early.

* Success criteria & KPIs - choose conservative pilot targets (roughly 80% of current manual
quality, for example). Capture user, business, and compliance metrics and define a closed
feedback loop.

2.2.2 Architecture snapshot

Roles

* Foundation - data and models (LLMs and, where appropriate, classical or specialist ML such
as classification, clustering, forecasting, or anomaly detection), embeddings, and a vector
database. This layer is responsible for security, storage, and lifecycle management.

* Orchestration - executes agents and workflows; enforces validation, fact checks, and routing
rules.

* Integration - offers APIs and messaging to users and internal systems; implements access
control and rate limiting.

2.2.3 Risks and mitigation

* Data privacy - apply encryption and strict access controls in the Foundation; redact or mask
sensitive fields at the API layer.

* Model drift - run scheduled quality tests and version models and prompts consistently.

* Vendor lock-in - keep an abstraction layer so providers can be swapped with minimal
disruption.

[]
R amartus ® ddcomo Business

2.3. Phase 2: Data (Knowledge & context)

4, Integration

¢ API Gateway
¢ Message Queue

e Cache Layer

exposes —P]

@ Orchestration

e Agent Runtime
e State Mgmt

o Workflow Engine

12

uses ——p|

“1 Foundation

LLM Provider
Vector DB
Embedding Models

Classical / Predictive

Figure 2.2: Three-layer architecture showing Foundation (data/models), Orchestration (agents/workflow),

and Integration (APIs/interfaces)

* Hallucinations - introduce explicit validator or fact-check steps and clear human escalation

paths.

* Governance - maintain audit trails, security event logs, and records of model behavior.

Leading KPIs: user engagement, latency, data freshness

Lagging KPIs: efficiency gains, quality improvements, financial impact

2.2.4 Practical tips

1. Start with a well-understood, “boring” process.
2. Instrument from day one with traces, structured logs, metrics, and alerts.
3. Design for failure: explicit fallbacks and a human review path.
4. Communicate scope, timeline, and success metrics up front.

2.3 Phase 2: Data (Knowledge & context)

Objective: Provide only the reliable context required to answer real questions - no more.

The temptation at this stage is to index everything: every runbook, every ticket, every network
diagram. In practice, more data often means more noise: outdated procedures, conflicting

o
—e amartus
[] []

® décomoBusiness

2.3. Phase 2: Data (Knowledge & context) 13

documentation, and stale network configurations that confuse rather than clarify. A tightly
curated knowledge base of 20 validated documents will consistently outperform a sprawling
collection of 2,000 unvetted files. Quality beats volume every time, and your operational staff will
thank you when the system delivers precise answers instead of plausible-sounding hallucinations.

NOTE: If the use case includes structured telemetry, time-series counters, ticket lifecycle
events, or predictive risk scores, plan early how classical ML outputs (forecasts, anomaly
flags, churn or failure probabilities) will be presented as discrete “facts” to the LLM
rather than as raw feature dumps. Maintain a simple contract: ML service — feature
synthesis — compact retrieval context.

2.3.1 Core activities

Source & curate - identify authoritative systems and tier data into GOLD (human-checked),
SILVER (historically reliable), and BRONZE (raw or synthetic). Begin with a small GOLD
set (on the order of 100-500 examples).

Retrieval (RAG) design - set chunking rules, pick an initial embedding model shortlist, and
define the promotion path (dev — prod — enterprise). Measure before you expand.
API/context integration - add circuit breakers, short-term caching (for example, 5-15
minutes), and rate limits; surface freshness timestamps to users.

Workflow mapping - verify actual process steps and enumerate decisions, approvals, and
exceptions.

Governance - version datasets, capture lineage, classify access levels, and define retention
policies.

Monitoring - measure relevance, latency, freshness, drift, and cost per retrieval. For numerical
or time-series feeds, also track data lag, percent missing, and anomaly flag precision.

2.3.2 Design choices and rationale

Dataset tiers - reserve GOLD for human-validated material used in evaluation; add lower
tiers only once the process is stable.

Embedding model - start with a solid off-the-shelf model and defer custom tuning until
measured metrics indicate a persistent deficit.

Vector store progression - use lightweight stores (FAISS/Chroma) in development, migrate
to managed stores (Qdrant/Pinecone/Weaviate) in production, and consider enterprise
search only if governance or scale requires it.

Retrieval contract - cap tokens per query (aim for roughly 4-8K) and introduce re-ranking
only if precision degrades.

Resilience baseline - combine gateway, circuit breaker, cache, and rate limiter as a reusable
template.

[]
R amartus ® ddcomo Business

2.4. Phase 3: Modeling (Agent design, ML integration & evaluation) 14

* Data quality monitoring - automatic anomaly and drift checks should trigger alerts and
quarantine. Treat drift detection for structured features separately from drift in text embed-
dings.

2.3.3 Risks and mitigation

 Stale or incorrect context - enforce freshness SLAs, display timestamps, and skip stale
content.

* Privacy leakage - classify and redact PII early and enforce least-privilege access controls.

* Rising cost - monitor tokens per answer and remove unused or low-value embeddings.

* Over-engineering - begin with a single retriever and add hybrid search only if recall is
demonstrably insufficient.

Leading KPIs: freshness percentage, retrieval precision, average tokens retrieved, drift score, and
cost per query.

Lagging KPIs: answer correction rate, escalations caused by missing context, and user trust
scores.

2.3.4 Practical tips

1. Ship a thin vertical slice: one authoritative source — one embedding model — one vector DB.
2. Version all parameters (dataset, embedding model, chunking) for auditability.

3. Measure before tuning: keep a small GOLD Q&A set for regular precision/recall checks.

4. Automate hygiene: nightly jobs to remove stale or orphaned embeddings.

@ Practitioner’s Perspective

By designing your data layer with this evolution path in mind - simple tools first, enterprise
replacements later - you avoid the painful “rip and replace” scenarios that have derailed many
proof-of-concepts. Keep interfaces abstract enough that swapping vector stores requires
configuration changes, not code rewrites.

2.4 Phase 3: Modeling (Agent design, ML integration & evaluation)

Objective: Assemble prompts, tools, and agent logic, and validate quality, latency, and cost before
committing to fine-tuning.

Many teams prematurely jump to fine-tuning or complex multi-agent architectures. The coun-
terintuitive reality: you’ll likely achieve 80-90% of your target quality through careful prompt
engineering and smart tool design. Fine-tuning should be your last resort, not your first move -
it locks you into a specific model version, requires ongoing maintenance, and costs significantly
more than prompt iteration. Start simple, measure obsessively, and only add complexity when
data proves it’s necessary.

[]
R amartus ® ddcomo Business

2.4. Phase 3: Modeling (Agent design, ML integration & evaluation) 15

2.4.1 Core activities

* Base model selection - choose a model that matches the task (reasoning depth, latency, cost,
and any required security guarantees). Begin with cost-effective options and upgrade only
if measured gaps persist.

* Prompt template - keep a stable structure (role, context, task, constraints, examples, output
format) and version it.

* Evaluation harness - combine automated tests with periodic human spot checks; include
regression and A/B comparisons.

* Tool integration - define strict JSON schemas, label tools by expected latency (fast <3s, slow
>3s, human-gate, fallback), and specify error handling. Surface predictive ML endpoints
(forecast_next outage, classify ticket priority, detect anomaly, for example) as explicit,
versioned tools with narrow schemas.

* Multi-agent split - introduce multiple agents only when specialization or parallelism demon-
strably improves outcomes.

» Safety & quality - add hallucination detection, format validators, and compliance keyword
scans.

2.4.2 Design choices and rationale

* Model portfolio - maintain a primary model and a fallback (different vendor or modality)
to improve resilience.

* Prompt governance - keep prompts under version control, use a review process, and log
prompt hashes per response.

* Tool call contract - enforce strict schema validation, retries, and circuit breakers for unreliable
APIs.

» State & memory - separate short-term conversation state from longer-term storage (vector
DB or database), and apply expiry rules and size limits. Treat ephemeral reasoning traces
differently from durable ML indicators (a rolling risk score, for instance) to prevent memory
bloat.

* Evolution path - begin with a single agent, add tools, and only move to a specialist trio
(Orchestrator / Domain / Validator) when metrics justify the added complexity.

2.4.3 Risks and mitigation

* Prompt drift - require formal reviews and trigger alerts on unapproved changes.

* Latency spikes - limit parallel tool calls and cache deterministic data where appropriate.

* Cost overrun - monitor tokens per turn and automatically switch to a cheaper model for
low-risk queries.

* Inconsistent output - apply strict format checks and automated repair with retries when
needed.

* Hallucinations - require cited sources and use a validator agent for fact checking.

[]
R amartus ® ddcomo Business

2.5. Phase 4: Deployment (Production, ML Ops and monitoring) 16

Model KPIs: quality score, citation coverage percentage, format compliance rate, P95 latency,
cost per successful task, and hallucination rate. When predictive ML tools are present: model
precision and recall (or ROC AUC), feature drift score, forecast MAPE/RMSE, and anomaly alert
precision and recall.

2.4.4 Practical tips

1. Extract gains from prompt and tool design (including ML tool calibration) before considering
fine-tuning - fine-tuning typically requires on the order of 1K high-quality examples to be
cost-effective.

2. Automate evaluation early to prevent hidden regressions.

3. Keep the tool list short - each tool adds complexity and a potential source of drift; retire
those with low value quickly.

4. Plan for rollback: preserve the ability to replay requests with the exact model, prompt, and
toolset (including ML model versions).

5. Separate evaluation layers: LLM answer quality, predictive model performance, and retrieval
relevance.

@ Practitioner’s Perspective

The industry buzz around multi-agent systems can be misleading. Specialized agents handling
distinct domains can improve accuracy and reduce latency through parallelism, that’s true.
However, they also multiply your debugging surface, complicate your evaluation strategy, and
increase operational overhead. In telecom use cases, we’ve found that most pilots succeed
with a single well-designed agent. Only introduce multiple agents when you have clear
evidence - not assumptions - that specialization solves a measurable problem.

2.5 Phase 4: Deployment (Production, ML Ops and monitoring)

Objective: Operate agents safely in production with full visibility and the ability to roll back
quickly.

Deployment is not a finish line, it’s the beginning of continuous learning. Use real user interactions
to validate assumptions, surface edge cases, and guide iterative improvement. This requires a
mindset shift: instead of trying to perfect the system before launch, you ship something good
enough with comprehensive instrumentation, then evolve based on evidence. The key enabler is
reversibility. Every change must be undoable within minutes, not hours or days.

2.5.1 Core activities

* Topology & placement - determine where sensitive and general data should reside (for
example, keep PII on-prem, run inference in a private cloud, and cache at the edge only
where safe).

[]
R amartus ® ddcomo Business

2.5.

Phase 4: Deployment (Production, ML Ops and monitoring) 17

Interface exposure - present a single API gateway that enforces authentication, rate limits,
and schemas.

Identity & access - use single sign-on, role or attribute-based access, regular key rotation,
and per-request policy checks.

Observability - capture traces, structured logs, and both technical and business metrics;
tag each call with model and prompt versions and, where relevant, ML model version and
feature bundle ID.

Rollout & incidents - adopt phased rollouts, canary testing, and clear rollback playbooks.
Cost & compliance - apply cost tagging for chargeback, dashboards, audit logging, and
retention/deletion jobs. Attribute ML inference cost separately from LLM token spend for
optimization.

2.5.2 Design choices and rationale

Deployment topology - avoid unnecessary movement of sensitive data and, where possible,
bring compute to the data. Co-locate high-volume predictive services with their data sources
to cut latency and egress.

Gateway contract - a single front door that rejects unsafe or malformed requests.

SLOs - for example, aim for P95 latency under 3s, 99.9% uptime, and agent error rates
below 0.1%; tie alerts to business impact thresholds.

Auditability - capture inputs, retrieved context IDs, model and prompt versions, tool calls,
outputs, user IDs, and ML model versions with input feature hashes.

Rollout strategy - internal beta — pilot group — percentage rollout — full deployment only
after guardrail checks pass.

2.5.3 Risks and mitigation

Cost growth - set budgets and alerts and automatically switch to a cheaper model for low-risk
traffic spikes.

Security gaps - perform secret scanning, enforce least-privilege, and adopt deny-by-default
policies.

Silent quality drops - gate promotions with continuous evaluation.

Operational toil - automate runbooks and add self-healing procedures where practical.

Operational KPIs: uptime, P95 latency, error rate, rollback count, cost per 1K requests, MTTR.
When ML tools are present: ML inference latency, feature pipeline freshness, model drift alerts

count.

Business KPIs: adoption %, automation rate, escalation frequency, time-to-value.

[]
R amartus ® ddcomo Business

2.6. Putting it all together 18

2.5.4 Practical tips

1. Gate releases with both SLO and quality checks (include health gates for predictive ML
models).

2. Keep changes reversible: feature flags, shadow traffic, and quick rollback (under 5 minutes
or so) for both LLM prompt versions and ML model versions.

3. Unify telemetry: use correlation IDs across components and propagate model, prompt, and
ML version IDs.

4. Track cost by use case or tenant to enable optimization (separately attribute LLM token
spend and ML inference cost).

5. Schedule regular ML evaluation jobs alongside LLM quality regression checks.

® Practitioner’s Perspective
@ Practit s P t

The audit trail deserves special attention in telecom contexts. Regulatory requirements,
customer disputes, and internal quality reviews all demand detailed records of how the system
reached specific decisions. However, comprehensive logging isn’t just about compliance - it’s
your debugging superpower. When users report unexpected answers, you need to replay the
exact retrieval results, model version, and reasoning chain that produced that response. Tag

everything, version everything, and retain logs longer than you think necessary.

2.6 Putting it all together

The loop (Scope — Data — Modeling — Deployment) becomes a productive flywheel when each
phase hands off concrete artifacts to the next: scoped KPIs focus data curation; curated GOLD
data supports reliable evaluation; evaluation results steer prompt, tool, and model updates; and
production telemetry validates or challenges earlier assumptions, guiding targeted fixes rather
than broad rewrites.

A compact playbook:

 Start narrow: capture a one-sentence use case and 3-5 KPIs.

* Build a small GOLD corpus and measure retrieval performance before expanding.

* Treat the prompt and tool stack as the primary optimization surface before investing in
tuning.

* Instrument everything from the prototype stage (trace IDs, versioning, cost metrics).

* Make reversibility non-negotiable: feature flags, rollbacks, and version logs.

Practical success typically hinges less on elaborate agent graphs and more on disciplined iteration
with observable, governed change. When conventional ML models are part of the system, treat
them as first-class, versioned tools - audited, evaluated, and charged separately. Keep the system
lean, measurable, and reversible; scale only what metrics justify.

[]
R amartus ® ddcomo Business

2.6. Putting it all together 19

Next: Chapter 3 converts this workflow into a lightweight architectural viewpoints framework.
Each viewpoint (lifecycle, governance, runtime, capability, infrastructure, scenario) records just
enough decisions, artifacts, and KPIs to guide evolution without bogging teams down - and provides
an auditable rationale for changes made across Scope — Data — Modeling — Deployment.

[]
R amartus ® ddcomo Business

20

3 Architectural viewpoints

This chapter adapts the time-tested architectural viewpoint approach - originally developed
for complex distributed systems - to the specific challenges of Al agents in telecom operations.
Rather than comprehensive upfront documentation, we apply the viewpoint discipline selectively:
capturing decisions where they matter most, versioning them alongside code, and retiring outdated
entries as the system matures.

Viewpoints structure decisions that otherwise scatter across slides and chat threads. They are
templates or specifications that are used to describe particular aspects of a system’s architecture
and provide focused lenses for different stakeholders to understand, evaluate, and govern the
system effectively.

Views are concrete instantiations of those viewpoints for a specific system, populated with actual
data, configurations, and decisions. Think of them as compact, reviewable lenses you update as
the system evolves - each records why a choice was made, what evidence supported it, and what
to monitor next. You rarely need every view at full depth for a telecom use case: start with the
few that address real risk or unblock delivery, and expand only when metrics show ambiguity;,
drift, or scaling pressure.

In practical terms, think of views as living documents that grow with your system. A newly scoped
pilot might have a two-page Data & Model Lifecycle view and a sketch for Runtime topology. Six
months into production, those same views might span ten pages each, enriched with operational
learnings, incident post-mortems, and optimization decisions. The goal isn’t comprehensiveness
from day one - it’s capturing just enough structure to enable informed decision-making without
premature over-design.

Why they matter:

* Focused lenses - each viewpoint isolates one concern (data lineage, risk controls, execution
graph, capability roadmap, infrastructure, or the concrete user journey), preventing a single
diagram from swallowing every decision.

* Role targeting - network operations focus on runtime failure domains and SLOs; compliance
inspects governance logs; ML engineers set lifecycle drift thresholds; product owners validate
scenarios; platform teams evolve infrastructure knobs.

* Cross-link traceability - the Scenario view serves as the living thread: every tool call, retrieval
rule, latency budget, and policy decision that appears there should map back to an entry in
one of the other five catalogs.

[]
R amartus ® ddcomo Business

https://ieeexplore.ieee.org/document/469759

3.1. Data & Model Lifecycle viewpoint 21

 Early inconsistency surfacing - mismatches (a latency budget in Runtime that contradicts a
P95 target in Physical, or a retention policy that clashes with a feature freshness window,
for instance) become tracked deltas rather than hidden technical debt.

* Lean governance - decisions are versioned where they belong; diffs on a view record
architectural change without digging through source or chat logs.

The end-to-end Scenario view is deliberately last: it pressure-tests whether each observed behavior
in a real request can be traced to a concrete, versioned entry in the other viewpoints.

This chapter maps the iterative workflow (Scope — Data — Modeling — Deployment) into six
compact architectural viewpoints.

Goal: capture only those decisions that accelerate safe progress, enable auditability, and avoid
over-design. The items inside a view typically emerge from phase work, but the viewpoints
themselves act as orthogonal catalogs of decisions and artifacts you can version, review, and
reuse.

3.1 Data & Model Lifecycle viewpoint

Purpose: Trustworthy, evolving knowledge and model assets that feed Modeling and Deploy-
ment.

A view that instantiates this viewpoint for a particular system answers the fundamental question:
“Where does our Al get its knowledge, and how do we know it’s reliable?” In telecom environments
with multiple documentation systems, legacy databases, and continuously changing network
configurations, maintaining data quality is an ongoing operational challenge, not a one-time setup
task.

Capture:

* Dataset tiers (GOLD/SILVER/BRONZE), lineage, retention, and PII handling.

* Feature and embedding generation configuration (chunking, embedding model id, refresh
cadence).

* Model registry entries (model id, data hash, hyperparameters, evaluation set versions).

* RAG contract - max tokens retrieved, top-k, re-ranking policy, and provenance rules.

* Quality gates - data constraints, drift thresholds, and golden-set metrics.

1 Example: GOLD Dataset Entry

Dataset: network-topology-docs-v3

Tier: GOLD

Source: Confluence wiki + validated network diagrams

Lineage: Manual export > JSON transform - validation » embedding
Refresh: Weekly (Sundays ©2:00 UTC)

[]
R amartus ® ddcomo Business

3.2. Governance, Risk, and Compliance viewpoint 22

Embedding: text-embedding-ada-002, chunk_size=512, overlap=50
Retention: 90 days (rolling), PII: None (network data only)
Quality gate: Min 95% retrieval precision on golden Q&A set (n=50)

KPIs:

* Freshness percentage (% of data within SLA refresh window)

* Retrieval precision (relevant docs in top-k results)

* Drift score (embedding distribution shift week-over-week)

* Model evaluation metrics (MAPE, precision, hallucination rate for cited answers)

Phase inputs/outputs: Data phase activities produce the GOLD seeds and retrieval configuration
captured here; Modeling consumes registry entries and returns evaluation findings; Deployment
telemetry updates drift and freshness indicators logged in this view.

3.2 Governance, Risk, and Compliance viewpoint

Purpose: Controlled, explainable evolution that reduces regulatory and reputational risk across
phases.

Governance is where Al ambitions meet corporate reality. A view that materializes this viewpoint
documents not just what policies exist, but how they’re enforced in code, monitored in production,
and audited after incidents. For telecom organizations subject to GDPR, industry regulations,
and internal compliance frameworks, this viewpoint often becomes the most scrutinized artifact
during audit reviews and executive briefings.

Capture:

* Policies (safety, privacy, IP) and enforcement points (pre/post filters, tool gating).

* Human oversight flows (escalation triggers and review SLAs).

* Audit log schema (prompt id, model version, tool calls, retrieved doc ids, decision codes).
* Incident playbooks (hallucination spike, data leak, model regression).

1 Example: PII Redaction Policy

Policy: PII-redaction-001

Enforcement: Pre-processing filter on all user inputs

Rule: Mask phone numbers, email addresses, credit cards

Audit: Log original hash, redacted version, timestamp, user_id
Escalation: Security team notified if >10 PII detections/hour

Review SLA: Weekly audit of flagged content (compliance team)
Incident playbook: PII-LEAK-2025 (lock system, notify DPO, forensics)

KPIs:

[]
R amartus ® ddcomo Business

3.3. Runtime/Process (Execution Topologies) viewpoint 23

* Policy violation rate (violations per 1K requests)

* False-block rate (legitimate requests blocked by policies)

* Review turnaround time (hours from escalation to resolution)

* Incident MTTR (mean time to resolution for governance incidents)

Phase inputs/outputs: Scoping sets initial risk boundaries referenced here; Data stewardship
records lineage used in audits; Modeling adds new evaluation suites that extend policy tests;
Deployment supplies enforcement and incident metrics.

3.3 Runtime/Process (Execution Topologies) viewpoint

Purpose: Reliable, debuggable execution graph for agents and ML tools.

When things go wrong in production, an instance of this viewpoint is your diagnostic map for
the system you build. It shows how a user request flows through your system, where decisions
happen, what can fail, and how failures are handled. The difference between a 5-minute incident
resolution and a 5-hour debugging session often comes down to how well you've documented
your runtime topology.

Capture:

* Chosen topology (single agent, orchestrator-worker, hierarchical planner) and rationale.
* Explicit node list: retrieval, routers, predictive ML tools, validators, and human gate.

* Failure handling (timeouts, retries, circuit breakers, fallback model escalation).

* Cost and latency budgets per node, plus caching and parallelism rules.

1 Example: Orchestrator-Worker Topology

Topology: Orchestrator-worker (3 domain agents)
Nodes:
- Orchestrator: Intent classification (GPT-40-mini, <500ms)
- Network-ops-agent: Troubleshooting domain (GPT-40, <3s)
- RAG-retriever: Knowledge Graph query (<200ms)
- Validator: Policy compliance check (<100ms)
Failure handling:
- Retrieval timeout: 5s » fallback to cached results
- LLM timeout: 30s - escalate to human
- Circuit breaker: Open after 3 consecutive LLM failures
Cost budget: $0.05 per request (P95), Latency: 3s end-to-end (P95)

KPIs:

* P95 latency (overall and per critical node)
* Tool failure rate (failed invocations per 1K requests)

[]
R amartus ® ddcomo Business

3.4. Capability/Development viewpoint 24

* Escalation frequency (human intervention rate)
* Cost per successful task (dollars per completed request)

Phase inputs/outputs: Scoping limits scope and complexity, which informs the node set; Data
supplies retrieval endpoints; Modeling produces the initial graph and tool contracts; Deployment
provides live latency and failure statistics for pruning.

3.4 Capability/Development viewpoint

Purpose: Platform capability maturity roadmap so teams invest in the right enablers at the right
time.

This viewpoint prevents the common trap of building infrastructure before you understand
requirements. Instead of guessing what tools and platforms you’ll eventually need, you track
what capabilities your current use cases actually require and plan incremental investments. It’s
the antidote to both under-investment (brittle point solutions) and over-investment (unused
enterprise platforms).

Capture:

* Current versus planned capabilities (orchestration, evaluation harness, tool registry, model
gateway, feature store, router confidence calibration).

* Build versus buy decisions and modular interfaces (tool schema, retrieval API, model contract
including confidence/abstain signals).

* Versioning and promotion workflow (prompt review cycle, tool schema change policy).

1 Example: Evaluation Harness Build Decision

Capability: Evaluation harness

Status: Build (in-house)

Rationale: Off-the-shelf tools lack telecom domain metrics
Components:

- Golden Q&A set (n=200, telecom-specific scenarios)

- Automated regression suite (runs on every prompt change)

- Human eval UI for edge cases (weekly review sessions)
Maturity: Level 3 (automated, versioned, production-integrated)
Roadmap: Add A/B testing framework (Q2 2026)

Interface: REST API (/evaluate endpoint, JSON schema v2.1)

KPIs:

* Lead time for prompt or tool change (hours from request to production)
* Regression escape rate (bugs reaching production per release)
* Evaluation coverage percentage (% of use cases with golden sets)

[]
R amartus ® ddcomo Business

3.5. Physical/Infrastructure viewpoint 25

* Reusable component adoption (% of new use cases reusing existing tools)

Phase inputs/outputs: Early Scoping highlights capability gaps; Data and Modeling iterations add
concrete components (retriever variants, evaluation harness); Deployment feedback reprioritizes
the roadmap captured here.

3.5 Physical/Infrastructure viewpoint

Purpose: Performance, resilience, and cost controls that support Deployment and feed back
operational telemetry.

Infrastructure decisions cascade through the entire system lifecycle. This viewpoint allows doc-
umenting the concrete deployment topology - where models run, how data flows, what breaks
under load, and who pays for what. In telecom contexts with strict uptime requirements and cost
constraints, these choices directly impact both operational success and business viability.

Capture:

» Serving layers (model gateway, batching, cache tiers) and scaling strategy (HPA metrics,
GPU pool segmentation).

* Storage tiers (vector DB versus object store), backup, and immutability.

* Network and security (egress policy, private endpoints, secret management, rate limits at
gateway).

* Observability stack (traces tagged with model/prompt/tool versions, and redaction rules).

* Cost governance (per-tenant budgets, token versus ML inference breakdown).

1 Example: Cloud Infrastructure Configuration

Serving: Azure OpenAl + self-hosted embedding service
Scaling: HPA on request queue depth (target: 100 pending)
Storage:
- Vector DB: Qdrant (3-node cluster, 1TB SSD)
- Object store: Azure Blob (GOLD datasets, immutable after validation)
- Backup: Daily snapshots, 30-day retention
Security:
- Private endpoints only (no public internet)
- Secrets: Azure Key Vault with rotation every 90 days
- Rate limits: 100 req/min per tenant (burst: 150)
Observability: OpenTelemetry > Azure Monitor, traces include model_version tag
Cost: $0.02/1K requests (target), $3K/month budget cap

KPIs:

e Uptime (SLA: 99.9% monthly)

[]
R amartus ® ddcomo Business

3.6. End-to-End Scenario viewpoint 26

* P95 latency (target: <3s end-to-end)

* Error rate (4xx + 5xx errors per 1K requests)

* Cache hit percentage (target: >60% for retrieval queries)
* Cost per 1K requests (dollars, tracked by use case)

* Rollback count (production rollbacks per month)

Phase inputs/outputs: Scoping defines SLO baselines; Data ingestion choices drive storage and
freshness tactics; Modeling determines serving needs (model size, tool mix); Deployment opera-
tional metrics populate such views over time.

3.6 End-to-End Scenario viewpoint

Purpose: A validated trace of a representative request that shows guardrails, data usage, and
decision points - evidence that the prior views connect coherently.

The Scenario view is where abstract architecture meets concrete reality. It captures real end-to-end
request flows - successful and failed-showing how governance policies trigger, which data sources
contribute, how models make decisions, and where costs accumulate. This view serves both as
validation (do all the viewpoints actually work together?) and as debugging reference (what
happened in production?).

Capture:

* Sequence diagram with Gateway — Orchestrator — Policy — Tools/Retrieval ~ Models —
Post-checks — Monitoring.

* Annotated decisions (router scores, thresholds, abstain logic, tool schemas used).

* Trace ID example with linked logs and evaluation outcomes.

1 Example: Network Troubleshooting Trace

Scenario: Network troubleshooting request
Trace ID: trace-2025-10-29-abc123
Flow:

1. Gateway: Auth (JWT valid) »> rate limit check (pass)
Orchestrator: Intent="network-ops” (confidence: 0.94)
Policy: PII check (none detected) = compliance pass
Retrieval: Query Knowledge Graph (3 docs, 2.1K tokens)
Network-ops-agent: GPT-40 reasoning (15 steps, 8.2s)

Tools: SDN API call (link status query, 340ms)
Post-check: Validator confirms no hallucinations (@.97 groundedness)

8. Monitoring: Log trace + cost ($0.04) + latency (9.1s total)
Outcome: Success, user satisfied (feedback: thumbs-up)

~N O O bW N

KPIs:

[]
R amartus ® ddcomo Business

3.7. Applying viewpoints incrementally 27

* Scenario task success rate (% of requests completed successfully)

* Groundedness score (avg citation quality, 0-1 scale)

* Average decision path length (number of tool invocations per request)
* Human intervention rate (% of requests requiring escalation)

Phase inputs/outputs: Scenario steps are assembled once initial Scoping, Data, and Modeling
artifacts exist; Deployment traces enrich the scenario with real latency, tool path variance, and
grounding metrics for regression guarding.

3.7 Applying viewpoints incrementally

The six viewpoints are best adopted incrementally, aligned with the Scope — Data — Modeling —
Deployment workflow (Chapter 2). Start with a minimal viable set, adding depth only when real
risks or bottlenecks emerge.

3.7.1 Adoption progression

Initial focus (Scoping & Data phases):
Begin with three foundational viewpoints that form the core feedback loop:

* Data & Model Lifecycle: Capture GOLD seeds, retrieval contracts, and quality gates. This
records which data and models drive decisions.

* Runtime/Process: Document execution topology, initial node list, and latency budgets.
This shows how artifacts flow through the system.

* End-to-End Scenario: Define the target request flow structure. While full trace evidence
only arrives during Deployment, the template (expected sequence, decision points, validation
criteria) guides Data and Modeling choices.

Why these three: Scoping sets boundaries; Data phase produces GOLD seeds and retrieval contracts
that populate the Lifecycle view and anchor Runtime decisions. The Scenario template provides
early validation criteria without premature complexity.

Pre-deployment hardening (late Modeling, pre-Deployment):
Add governance and infrastructure viewpoints as the system approaches production:

* Governance, Risk & Compliance: Record policy boundaries, enforcement points, audit
schema, and incident playbooks. As Modeling finalizes tool schemas and evaluation suites,
this view captures where and how policies are enforced.

* Physical/Infrastructure: Document latency budgets, scaling triggers, observability con-
figuration, and cost governance rules. Deployment planning exposes infrastructure needs
(serving layers, storage tiers, monitoring) before live traffic.

[]
R amartus ® ddcomo Business

3.7. Applying viewpoints incrementally 28

Why now: These viewpoints provide explicit guardrails and operational controls. Adding them
too early creates unused overhead; adding them too late risks compliance gaps or performance
surprises in production.

Operational maturity (Deployment & beyond):
Expand capability tracking based on production experience:

* Capability/Development: Track build-vs-buy decisions, feature maturity levels, and plat-
form roadmap driven by operational feedback. Early iterations reveal gaps (e.g., router
confidence calibration, feature store requirements, evaluation harness improvements).

Why last: Premature capability planning creates infrastructure before understanding requirements.
Operational reality - which tools see heavy use, which integrations bottleneck, which governance
policies trigger frequently - should drive capability investment.

Governance throughout:

Treat each view as a versioned set of documents with change records capturing: - What changed
(e.g., added fraud detection policy to Governance view) - Why it changed (e.g., hallucination spike
in production telemetry) - Metrics before/after (e.g., false-positive rate, review latency)

This preserves auditability and surfaces architectural drift. Reviewers can diff view versions rather
than reconstructing decisions from source code or chat logs.

3.7.2 Viewpoint adoption by phase

The table below shows which viewpoints to enable at each lifecycle phase and what concrete
artifacts become part of each view. Read it as your incremental adoption roadmap: start with three
viewpoints (Data & Model Lifecycle, Runtime, Scenario) during Scoping & Data, progressively layer
in Governance and Physical constraints as you approach production, and finally add Capability
tracking once operational patterns emerge. The “1 (above)” notation indicates cumulative adoption
- each phase builds on the viewpoints from previous phases.

Table 3.1: Viewpoint adoption progression aligned with lifecycle phases

Phase Active Viewpoints Key Outputs

Scoping & Data Data & Model Lifecycle, Runtime topology, = GOLD seeds, retrieval contract,
Scenario template execution graph template,
expected trace structure

Modeling 1 (above) + Governance (start drafting) Evaluation suites, tool
schemas, initial policy
boundaries

Pre- T (above) + Governance, Physical Audit schema, SLO targets,

Deployment infrastructure config

[]
R amartus ® ddcomo Business

3.7. Applying viewpoints incrementally 29

Phase Active Viewpoints Key Outputs
Deployment & All six viewpoints Live telemetry, incident
ops playbooks, real drift metrics,

actual trace evidence

When to expand: Add view depth when data lineage complexity emerges, tool integration patterns
stabilize, latency/cost constraints tighten, or compliance mandates surface. The roadmap evolves
continuously based on operational feedback.

3.7.3 View-to-phase integration

The previous table showed when to activate viewpoints; this table reveals how they expand with
depth across phases. Read each row to understand a single viewpoint’s lifecycle: which phases
contribute to the view (columns 2-5) and which viewpoints use them (rightmost “Feeds To”
column). For example, the Data & Model Lifecycle row shows it receives GOLD seeds during the
Data phase, evaluation findings during Modeling, and drift metrics during Deployment - then
feeds lineage information to Governance, endpoint configurations to Runtime, and freshness SLAs

“w

to Physical infrastructure planning. The “-” symbol indicates phases where the viewpoint is not

likely updated with phase-specific artifacts (though the viewpoint may still be maintained or

referenced).
Table 3.2: Viewpoint-to-phase integration matrix showing artifact flows
Viewpoint Scoping Data Modeling Deployment Feeds To
Data & Model - GOLD Evaluation Drift metrics, Governance
Lifecycle seeds, findings, freshness (lineage),
retrieval model registry telemetry Runtime
config (endpoints),
Physical
(freshness
SLAS)
Governance, Risk - Policy tests Enforcement Runtime
Risk & boundaries metrics, (policy hooks),
Compliance incidents Scenario
(compliance
traces)

[]
R amartus ® ddcomo Business

3.7. Applying viewpoints incrementally 30
Viewpoint Scoping Data Modeling Deployment Feeds To
Runtime/Pro- Scope limits Re- Tool contracts, Latency stats, Physical
cess trieval execution failure rates (SLOs),
end- graph Scenario
points (sequence
structure)
Capability/De- Gap Compo- Maturity Operational Platform
velopment inventory nents tracking feedback investment
roadmap
Physical/In- SLO Volume, Serving needs Actual uptime, Runtime
frastructure baselines fresh- (model size, cost per request (failure
ness tool mix) modes),
needs Scenario
(latency
traces)
End-to-End Expected - - Actual trace Regression
Scenario flow evidence tests, review
template checklists,
readiness
criteria

Result: A lightweight, evolving architecture narrative that keeps decisions transparent while
preserving the rapid iteration loop established in Chapter 2. Views grow with the system, capturing
just enough structure to enable informed decision-making without premature over-design.

o
—e amartus
[] []

® ddcomo Business

31

4 Key metrics & KPlIs

This chapter consolidates metrics from the four-phase lifecycle (Chapter 2) and six architectural
viewpoints (Chapter 3) into a practical measurement framework. The goal: instrument agents and
ML tools with metrics that enable fast, evidence-based decisions while maintaining governance
and cost control.

Treat this as a curated catalog of high-impact metrics proven effective in real-world telecom
deployments - not an exhaustive list, but a starting point to adapt for your specific use case. When
defining your own metrics, be specific: provide measurable definitions, baseline measurements,
target thresholds, and clear success criteria that reflect both business impact and technical health.
The values shown are illustrative examples; set targets relevant to your operational context.

4.1 Metrics by lifecycle phase

This table organizes key metrics according to the Scope — Data — Modeling — Deployment
workflow, aligned with metrics defined in Chapter 2.

Table 4.1: Lifecycle phase metrics summary

Phase Leading KPIs (predict progress) Lagging KPIs (validate value) Example Targets

Scop- User engagement rate, P95 Efficiency gains, Quality 40% adoption in

ing latency, Data freshness % improvements, Financial impact 6 weeks; <3s
response time;
Positive ROl in 3

months
Data Freshness %; Retrieval precision; Answer correction rate; GOLD =95%
Avg tokens retrieved; Drift score; Escalations (missing context); fresh; =80%
Cost per query User trust scores precision at

top-5; <15%
correction rate

[]
R amartus ® ddcomo Business

4.2. Metrics by architectural viewpoint

32

Phase Leading KPIs (predict progress) Lagging KPIs (validate value) Example Targets
Mod- Quality score; Citation coverage ML model precision/recall/ROC =85% quality
eling %; Format compliance; P95 AUC; Feature drift score; (pilot); =92%
latency; Cost per task; Forecast MAPE/RMSE; quality
Hallucination rate Anomaly alert precision (production);
<2%
hallucination
rate; ROC AUC
=0.90
De- Uptime; P95 latency; Error rate; Adoption %; Automation rate; =99.9% uptime;
ploy- Cost per 1K requests; MTTR; ML. Escalation frequency; <$2 per 1K
ment ops: ML inference latency, Time-to-value requests; =60%

Feature pipeline freshness,
Model drift alerts

adoption in 3
months; ML:
<500ms (fast
tools), <15min
freshness

How to measure: Each metric requires defining data sources (API logs, user surveys, ticketing
systems), computation methods (formulas, aggregation windows), and ownership (who monitors

and a

cts on thresholds).

4.2 Metrics by architectural viewpoint

This table maps metrics to the six viewpoints from Chapter 3, showing which KPIs validate each

architectural concern.

Table 4.2: Viewpoint metrics summary

Viewpoint Key Metrics

Example Targets Data Sources

Data

& Model Freshness %;

Lifecycle Retrieval precision;

Drift score; Model
evaluation (MAPE,

precision/recall)
Governance, Policy violation rate;
Risk & False-block rate;
Compliance Review turnaround;

Incident MTTR

GOLD =95% fresh; =80% Vector DB metadata;
precision; Drift alert at Evaluation harness;
>0.15 Drift detection service

<1% violations; <5% false Policy enforcement
blocks; <4h high-priority logs; User feedback;
reviews Incident management

o
—e amartus
[] []

® ddcomo Business

4.3. Telecom-specific KPIs

33

Viewpoint Key Metrics Example Targets Data Sources
Runtime / P95 latency (per Retrieval <500ms; LLM Distributed tracing
Process node); Tool failure <2s; Total <5s; <2% tool (OpenTelemetry); Tool
rate; Escalation failures orchestration logs
frequency; Cost per
task
Capability / Lead time <5 days for prompts; <5% Version control; CI/CD
Development (prompt/tool regressions; =80% test pipeline; Test suite
change); Regression coverage metadata
escape rate;
Evaluation coverage
%; Reusable
component adoption
Physical / Uptime; P95 latency; =99.9% uptime; <0.5% Health monitoring;
Infrastructure Error rate; Cache hit errors; =40% embedding = APM tools; Cache
%; Cost per 1K cache; <1 rollback/quarter layer metrics
requests; Rollback
count
End-to-End Scenario task success =95% success; =90% Scenario test suite;
Scenario rate; Groundedness groundedness; 2-5 steps Citation validator;

score; Avg decision
path length; Human
intervention rate

(simple); <15%
intervention

Trace logs

4.3 Telecom-specific KPlIs

These metrics address operational concerns unique to telecom environments, grounded in real
Network Operations Center (NOC) and customer service workflows.

Note: Actual baseline performance and achievable targets vary significantly by operator, use
case complexity, existing automation maturity, and organizational context. Measure your specific

baseline before setting targets.

Table 4.3: Network operations KPIs

Metric Definition Example Baseline — Target Data Source
MTTR Mean Time to 4.2h — 2.5h (40% reduction) NOC ticketing system
reduction Resolve network

incidents

o
—e amartus
[] []

® ddcomo Business

4.4. Metric interdependencies and trade-offs

34

Metric Definition Example Baseline — Target Data Source

Truck roll % field visits 0% — 25% reduction Field service

avoidance prevented by remote management
diagnosis

First-time- % dispatches with 65% — 85% Technician completion

right correct parts/info reports

dispatch first visit

Network KPI % agent-identified N/A — =75% accuracy Anomaly detection

correlation anomalies matching logs + incident

real incidents

reports

Cost impact example: 25% truck roll reduction X 1,000 monthly dispatches x $200/truck roll
= $50,000/month savings.

Table 4.4: Customer operations KPIs

Metric

Definition

Example Baseline — Target

Data Source

First-contact
resolution
(FCR)
Average
handling
time (AHT)
Service
order error
rate

SLA
compliance

% issues resolved on
first contact

Mean time per
customer interaction

% orders requiring
manual correction

% tasks completed
within SLA

55% — 70% (+15pp)

8.5 min — 5.5 min (35%

reduction)

8-12% — <3%

80-85% — =95%

Call center analytics
Workforce
management system

Order management
system

Service assurance
platform

Business impact example: 35% AHT reduction X 10,000 monthly calls X 3 minutes saved X
$1/min labor = $30,000/month savings.

4.4 Metric interdependencies and trade-offs

Understanding how metrics influence each other enables smarter optimization decisions.

4.4.1 Leading — Lagging relationships

These technical metrics predict business outcomes:

o
—e amartus
[] []

® ddcomo Business

4.4. Metric interdependencies and trade-offs 35

Table 4.5: Leading-to-lagging metric relationships

Leading Metric Predicts » Lagging Metric
Response Time (P95) - User Adoption
Retrieval Precision - Answer Correction Rate
Citation Coverage - User Trust Score
Format Compliance e Downstream Error Rate
Freshness % - Escalation Frequency
Tool Failure Rate - Automation Rate

Application: When leading metrics degrade, proactively fix root causes before lagging business
metrics suffer.

4.4.2 Common trade-offs

Optimizing one metric may negatively impact another:

* Accuracy vs. Latency: Higher accuracy often requires more retrieval, longer prompts, or
validator steps (adds 1-3s latency).
— Mitigation: Use fast models for simple queries; escalate to powerful models only when
confidence is low.
* Citation Coverage vs. Response Length: Requiring citations increases output verbosity
and token cost.
— Mitigation: Compact citation format (footnote IDs instead of full URLSs); cache fre-
quently cited sources.
* Automation Rate vs. Quality: Aggressive automation may increase error rate if confidence
thresholds are too low.
— Mitigation: Calibrate confidence thresholds using ROC curves; set escalation trigger at
optimal precision/recall balance.
* Cost vs. Freshness: Real-time data pipelines cost more than batch updates.
— Mitigation: Tier data by sensitivity: real-time for alarms/outages, hourly for config,
daily for documentation.
* Reusability vs. Specialization: Generic components enable reuse but may underperform
vs. domain-tuned solutions.
— Mitigation: Start generic; specialize only when KPI gaps persist after prompt and tool
optimization.

@ Practitioner’s Perspective

Metrics are only valuable if they drive action. Establish clear ownership for each metric and
define explicit thresholds that trigger investigation or rollback. A metric without an owner

[]
R amartus ® ddcomo Business

4.5. Application guidance 36

and a response playbook is just noise. In telecom operations, where incidents can impact
thousands of customers, the difference between a monitored metric and an actionable alert
is often measured in minutes of downtime prevented.

4.5 Application guidance

For each metric, document:

* Metric name: Unique identifier (e.g., agent.retrieval.precision).

* Definition: Plain-English explanation and formula.

* Owner: Individual or team responsible for monitoring and action.

* Data source: Logs, APIs, or systems providing raw data.

* Target range: Acceptable thresholds and alert triggers.

* Review cadence: Daily monitoring, weekly review, or monthly deep dive.

@ Practitioner’s Perspective

Start by tracking fewer metrics well rather than many metrics poorly. Three accurately
measured and actively monitored KPIs will drive better decisions than fifteen metrics that
generate reports nobody reads. As your system matures and patterns emerge, expand your
measurement coverage deliberately, adding new metrics only when they address specific
questions or risks that have surfaced in operation.

[]
R amartus ® ddcomo Business

37

5 Framework in action

The framework’s value emerges through practical application: multi-agent architectures that scale
across use cases while maintaining governance and measurability. This chapter demonstrates how
the four-phase lifecycle (Chapter 2) and six architectural viewpoints (Chapter 3) guide concrete
implementation decisions in telecom systems, validating the approach through real deployments
and establishing reusable patterns for rapid replication.

@ Practitioner’s Perspective: Reusability

Real-world telecom deployments reveal a consistent architecture pattern: layered agent
systems that translate the framework’s abstractions into operational reality. Teams that
master this architecture on their first use case can achieve 40-60% infrastructure reuse on
the second, with potential acceleration to 70-80% reuse by the fifth deployment. That said,
reuse percentages vary significantly based on domain similarity and organizational maturity.

5.1 Multi-agent reference architecture

Telecom agent systems converge on a three-layer architecture that embodies the framework’s
separation of concerns while enabling domain specialization and component reuse.

5.1.1 Layer 1: Orchestrator (intent classification)

The orchestrator serves as the system’s entry point, routing user requests to appropriate do-
main specialists based on intent detection. This layer implements governance controls defined
in views based on the Governance, Risk & Compliance viewpoint (Section 3.2) through au-
thorization checks, compliance validation, and audit trail generation. It maps directly to the
framework’s Scoping phase (Section 2.2) - understanding request context, validating boundaries,
and determining the appropriate execution path.

Key responsibilities:

* Intent classification: determine which domain agent handles the request

* Authorization enforcement: validate JWT claims against allowed operations
* Request routing: dispatch to specialized domain agents

* Audit logging: capture request metadata for compliance tracking

[]
R amartus ® ddcomo Business

5.1. Multi-agent reference architecture

User Interface

User requests

REST API

Agentic Al Platform

A4

Orchestrator

Route by intent

Domain Agents

Invoke tools

REST API

v

Backend Systems

Figure 5.1: Three-Layer Agent Architecture for Telecom

o
o, ama rtus CO lt ® ddcomo Business

5.1. Multi-agent reference architecture 39

Solution examples: LangGraph (multi-agent orchestration); Kong Gateway, Azure API Gateway
(authentication, rate limiting, audit logging).

5.1.2 Layer 2: Domain agents (planning and execution)

Domain agents specialize by operational area: network operations, service assurance, provisioning,
customer support. Each agent implements the full four-phase lifecycle (Chapter 2) internally,
maintaining isolation between domains while sharing common infrastructure.

Within each domain agent:

* Scoping: Validate request against service rules and domain constraints

* Data: Gather context from Knowledge Graph, telemetry systems, and domain APIs
* Modeling: Apply ReAct pattern for multi-step reasoning and tool orchestration

* Deployment: Execute actions via the Tools layer with appropriate guardrails

Domain agents implement end-to-end flows documented in views based on the End-to-End
Scenario viewpoint (Section 3.6), executing sequences that span data retrieval, decision-making,
and action execution. They maintain domain-specific context while delegating infrastructure
concerns to shared layers.

Solution examples: LangChain, Semantic Kernel (agent frameworks with tool binding and
memory); GPT-4, Claude, Gemini Pro (LLM reasoning engines with function calling).

5.1.3 Layer 3: Tools (reusable actions)

The Tools layer provides reusable capabilities invoked by domain agents: API connectors, data
retrieval functions, graph queries, validation logic, and action executors. This layer implements
infrastructure decisions documented in views based on the Physical/Infrastructure viewpoint
(Section 3.5), delivering 40-60% reusability across use cases by centralizing integration patterns.

Backend integration targets:

* Knowledge Graph: GOLD-tier structured domain knowledge (network topology, service
specifications, configuration standards)

* SDN Platform: Network programmability and orchestration APIs

* Assurance Systems: Real-time telemetry, performance metrics, and fault data

Solution examples: Neo4j (knowledge graph), Milvus/Qdrant (vector search); NetworkX (graph
algorithms for path computation); Prometheus, Elastic Stack (telemetry and observability); MCP
servers (Model Context Protocol - standardized tool exposure for LLM integration with external
systems).

o
R amartus ® décomoBusiness

5.1. Multi-agent reference architecture 40

5.1.4 Architectural principles

Separation of concerns: Orchestration logic remains independent from domain reasoning, which
stays isolated from backend integration. This allows parallel development: platform teams
enhance the Tools layer while domain experts refine agent logic.

Framework alignment: Each layer maps to specific framework constructs. The Orchestrator
enforces governance and scoping boundaries; Domain Agents execute the four-phase lifecycle;
Tools implement physical infrastructure capabilities. Views document these architectural decisions,
ensuring choices in one layer remain traceable to artifacts captured in other viewpoints.

Reusability mechanics: Tools built for one use case (e.g., topology graph traversal for trou-
bleshooting) become available to others (e.g., service design validation). By the fifth use case,
70-80% of the Tools layer requires no modification, reducing development time from weeks to
days.

Security model: JWT-based authentication flows through all layers. Claims-based authorization
ensures domain agents access only permitted backend systems. The Orchestrator validates tokens
at ingress; Tools enforce backend-specific authorization at egress. This bidirectional security
model implements audit requirements documented in governance views based on the Governance,
Risk & Compliance viewpoint.

@ Practitioner’s Perspective: Technology Selection and Three-Layer Benefits

Technology patterns examples observed across telecom deployments:
* Orchestration: LangGraph, custom FastAPI with intent classification
* Agent frameworks: LangChain or Semantic Kernel (function calling, memory, tool
binding)
* LLM providers: OpenAl GPT, Anthropic Claude, Google Gemini
* Knowledge layer: Neo4j (graph topology), Milvus/Qdrant (vector search), NetworkX
(path algorithms)
* Integration standards: MCP (Model Context Protocol) servers for standardized tool
exposure, REST/gRPC for legacy systems
* Observability: Prometheus + Grafana (metrics), Elastic Stack (logs), OpenTelemetry
(distributed tracing)
Why three layers? Building monolithic agents handling routing, domain logic, and integra-
tion initially appears faster, but multi-use-case deployments reveal systemic issues: agent
competition on ambiguous requests, duplicated API integration code, and slow iteration
cycles (routing changes require full redeployment). The three-layer architecture eliminates
these bottlenecks - Orchestrator resolves ambiguity, shared Tools remove duplication, layer
independence enables continuous deployment of domain logic without platform disruption.
Tool integration evolution: Start with direct REST/gRPC connectors for rapid prototyping.

[]
R amartus ® ddcomo Business

5.2. Use case validation 41

Migrate high-reuse integrations (Knowledge Graph, SDN APIs, telemetry systems) to MCP
servers as the portfolio matures - standardized schemas reduce integration effort for new
use cases and improve LLM tool discovery.

5.2 Use case validation

Three implementations demonstrate the architecture’s versatility across the telecom operational
spectrum: runtime incident response, design-time planning, and continuous optimization. Each
use case shows how the four-phase lifecycle and architectural viewpoints guide concrete imple-
mentation decisions, with teams creating specific views that document their architectural choices
within the relevant viewpoint frameworks.

5.2.1 Use case 1: Service recovery

Problem: Network path failures require rapid alternative routing while respecting operational
constraints (e.g., avoid specific locations, upgrade bandwidth tiers).

Framework mapping:

* Primary phase: Deployment (Section 2.5) - runtime operations under SLA pressure

* Key viewpoints: Runtime/Process (incident response flows), Scenario (end-to-end path
reconfiguration)

* Data tiers: GOLD (network topology graph), SILVER (real-time link status telemetry)

Architecture instantiation:

1. User requests via interface: “Find new path avoiding Paris, upgrade to 10G”
2. Orchestrator authenticates request, routes to Network Operations domain agent
3. Domain agent executes multi-step plan:
* Tool invocation: Query Knowledge Graph for topology structure
* Tool invocation: Check Assurance Systems for current link health and KPIs
* Internal reasoning: Compute feasible alternative paths using constraint solver
* Tool invocation: Validate bandwidth availability against SDN platform inventory
* Tool invocation: Execute path reconfiguration via SDN APIs
4. Domain agent returns confirmation with new path details and estimated restoration time

Success KPIs (from Chapter 4):

* MTTR reduction
* Integration cost reduction: Single REST API vs. three separate operator portals
* SLA compliance increase

[]
R amartus ® ddcomo Business

5.2. Use case validation 42

Reusable components: Knowledge Graph query tool (used in subsequent use cases), SDN
connector (used in provisioning and optimization), path computation logic (adapted for design
validation).

5.2.2 Use case 2: Network design assistant

Problem: Non-expert users struggle to create valid network topologies; design errors cause
provisioning failures and project delays.

Framework mapping:

* Primary phases: Scoping (requirements gathering) + Data (design validation against
service specifications)

* Key viewpoints: Scenario (conversational design workflow), Governance (compliance with
service rules and architectural standards)

* Data tiers: GOLD (service specifications, reference architectures), BRONZE (unstructured
user requirements from meeting transcripts)

Architecture instantiation:

1. Conversational UI (Next.js + React Flow) collects requirements through LLM-guided dia-
logue

Domain agent validates design constraints using NetworkX-based graph rules engine
Tools layer retrieves applicable service specifications and reference architectures

React Flow visualization tool generates interactive topology diagram

aih W

Al proposes optimizations, prepares automated order submission to Naa$S provisioning APIs
Success KPIs:

* Onboarding time for non-expert users reduction
* Design error rate reduction
* Proposal win rate improvement

Reusable components: Service specification validator (adapted for troubleshooting constraint
checking), NetworkX-based graph rules engine (used in capacity planning), React Flow topology
visualization (integrated into operational dashboards).

5.2.3 Use case 3: Automated troubleshooting

Problem: Manual troubleshooting requires scarce skilled operators, delays recovery, and increases
operational costs.

Framework mapping:

* Primary phases: Data (log and telemetry analysis) + Modeling (anomaly detection, root
cause reasoning)

o
R amartus ® décomoBusiness

5.2. Use case validation

43

* Key viewpoints: Data/Model Lifecycle (telemetry pipelines and quality gates), Runtime

(incident response orchestration)

* Data tiers: GOLD (device inventory and configuration baselines), SILVER (structured
telemetry streams), BRONZE (unstructured error logs)

Architecture instantiation:

1. LLM-based agent interprets device status messages, identifies configuration drift and opera-

tional faults

2. Anomaly detection tool flags statistical deviations across device populations

w

Tools layer correlates logs, telemetry streams, and topology data to isolate fault domain

4. Network path analysis generates Tier-1 incident tickets with recommended remediation

actions

Success KPIs:

* Average troubleshooting time reduction

* SLA compliance increase

» Tier-2 escalation rate reduction (more issues resolved at Tier-1)

Reusable components: Log parsing and normalization tool (used in security monitoring), teleme-

try correlation engine (adapted for performance optimization), ticket integration API (shared

across operational workflows).

5.2.4 Cross-use-case patterns

Table 5.1: Framework adaptation across use cases

Element Service Recovery Network Design Troubleshooting
Lifecycle Deployment Scoping + Data Data + Modeling
emphasis

Timeline Minutes (incident) Days (design cycle) Minutes (MTTR)
Data Topology, link status Service specs, Telemetry, logs,
sources requirements inventory

Domain Path solver, SDN APIs Graph validator, LLM, Anomaly detector, LLM,
tools visualizer correlator

GOLD tier Topology graph Service specifications Device inventory
data

Success MTTR Onboarding time Troubleshooting time
metric

All three use cases share infrastructure skeleton despite serving different operational domains:

o
—e amartus
[] []

® ddcomo Business

5.3. Implementation roadmap 44

* Authentication: JWT with role-based claims and scope validation

* LLM gateway: Centralized prompt management, response caching, and cost tracking

* Monitoring: Unified observability for agent behavior, tool latency, and cost attribution
* Knowledge Graph: Common semantic layer providing domain context across use cases

This convergence validates the framework’s reusability hypothesis: investing in solid shared
infrastructure during the first two use cases delivers significant returns by use cases five through
ten.

5.3 Implementation roadmap

Organizations adopting this framework can progress through four stages, balancing rapid value
delivery with architectural sustainability. Timelines and resource allocation vary based on organi-
zational readiness, domain complexity, and existing infrastructure maturity.

5.3.1 Stage 1: Pilot use case

Focus: Validate framework applicability through one well-scoped implementation.

* Choose high-value, bounded problem (service recovery, network design, troubleshooting)

* Build foundational three-layer architecture with minimal viable features

* Explicitly map implementation to framework: document phase transitions (Chapter 2) and
populate initial views for primary viewpoints (Chapter 3)

* Establish baseline — target KPIs with measurement infrastructure (Chapter 4)

Success criteria: Agent successfully handles real user requests end-to-end; measurable improve-
ment in target KPI; architectural patterns documented for replication.

5.3.2 Stage 2: Architecture refinement

Focus: Extract reusable patterns from pilot experience.

* Identify common components suitable for platform layer (authentication, logging, error
handling)

* Document domain agent template and tool invocation patterns

* Establish governance foundations: security model, audit requirements, compliance check-
points

* Create capability roadmap: build-vs-buy decisions for anticipated use cases

Success criteria: Second use case development time significantly reduced through component
reuse; governance controls operational.

[]
R amartus ® ddcomo Business

5.4. Conclusions 45

5.3.3 Stage 3: Use case expansion

Focus: Apply validated architecture to additional domains.

* Deploy use cases following established patterns (network planning, customer analytics,
security operations)

* Track infrastructure reuse metrics to validate platform maturity

* Gate new use cases on demonstrable KPI improvement or documented learnings

* Establish formal change management as portfolio grows (impact analysis, architecture
review, incident retrospectives)

Success criteria: Infrastructure reuse increases with each deployment; new use cases launch
faster than pilot; platform changes don’t destabilize existing use cases.

5.3.4 Stage 4: Platform maturation

Focus: Transition from collection of use cases to unified agent platform.

* Consolidate similar tools and connectors based on observed patterns

* Enhance orchestrator intelligence (intent classification, context management, cross-domain
routing)

* Optimize operational capabilities (monitoring, cost controls, performance tuning)

* Evolve governance policies based on production incidents and audit feedback

Maturity indicator: New use cases deploy rapidly with minimal platform modifications. Focus
shifts from proving feasibility to optimizing efficiency.

5.4 Conclusions

The three-layer architecture provides a proven pattern for translating framework concepts into
operational systems:

* Orchestrator enforces governance boundaries and routing logic across all use cases
* Domain Agents execute the four-phase lifecycle within specialized domains

* Tools centralize integrations, enabling component reuse across implementations

Architectural views document decisions at each layer: governance views capture policy enforce-
ment in the Orchestrator, scenario views trace execution flows through Domain Agents, and
infrastructure views specify tool implementations and backend integrations. This documentation
ensures architectural choices remain visible, traceable, and revisable as the system evolves.

Use case validation across service recovery, network design, and troubleshooting demonstrates
the framework’s versatility: consistent structure applied to diverse domains yields measurable
outcomes. Organizations that master this architecture on their first use case accelerate subsequent
deployments through disciplined component reuse and pattern recognition.

[]
R amartus ® ddcomo Business

5.4. Conclusions 46

The framework’s ultimate value lies not in any single implementation but in establishing architec-
tural discipline that scales: governance mechanisms that prevent shortcuts, data practices that
ensure quality, and operational patterns that compound returns across use cases.

[]
R amartus ® ddcomo Business

47

6 Summary

This framework exists to accelerate telecom Al adoption by avoiding common pitfalls. The
preceding chapters presented a pragmatic solution: a four-phase execution lifecycle integrated
with six architectural viewpoints, validated through real-world use case deployments. This chapter
validates the framework against the obstacles identified in Chapter 1 and synthesizes lessons for
organizational adoption.

6.1 Framework validation: problems solved

The Introduction (Chapter 1) identified core failure modes that trap telecom Al initiatives in
proof-of-concept purgatory. This section validates how the framework addresses each category of
challenge: delivery execution obstacles first, then the governance and risk controls that enable
enterprise adoption.

6.1.1 Execution challenges: delivery and integration

The following table maps core execution failures to framework solutions that restore predictability
and measurable progress.

Table 6.1: Execution validation: Delivery and integration obstacles addressed through framework design

Challenge Framework solution Described examples

Undefined ROI - KPI Baseline + Targets Phase 1 Scoping establishes measurable
Pilots lack (Section 2.2, Chapter 4) success criteria before building

baseline KPIs and

target

improvements

Data Overreach - GOLD Seed Curation Start with a small GOLD set; Data phase
“Knowledge lake” (Section 2.3, Section 3.1) emphasizes quality over volume

initiatives delay
impact

[]
R amartus ® ddcomo Business

6.1. Framework validation: problems solved 48

Challenge Framework solution Described examples

Fragile Evaluation Harness + Automated quality gates block
Prototypes - Architecture (Section 2.4, regressions; version control for prompts,
Notebooks and Section 3.3, Section 5.1) tools, and models; three-layer

scripts create architecture (Orchestrator — Domain
operational Agents — Tools) provides

fragility production-grade separation of concerns
Disconnected M. ML Tool Integration ML forecasting, classification, anomaly
Assets - Existing (Section 2.4, Section 5.1.3) detection exposed as callable tools with
models remain strict JSON schemas; Tools layer

siloed from agent (Section 5.1.3) provides standardized
workflows integration pattern; troubleshooting use

case demonstrates anomaly detector
integration for automated ticket
generation

These execution patterns - starting narrow with clear KPIs, curating quality over volume, automat-
ing quality gates, integrating existing ML assets - restore predictability to Al delivery. However,
solving execution challenges alone doesn’t unlock enterprise production deployment. In telecom
operations, governance and risk controls determine whether pilots scale or stall.

6.1.2 Governance & risk controls: the enterprise enabler

Governance isn’t an afterthought - it’s the difference between production approval and perma-
nent pilot status. Enterprise Al governance embeds risk controls throughout the lifecycle. The
framework addresses governance as a distinct challenge category because telecom operators face
regulatory scrutiny, compliance mandates, and operational risk thresholds that consumer-focused
Al deployments rarely encounter.

The following table details how each enterprise risk category maps to framework mitigation
strategies, expanding on the governance challenge introduced above.

[]
R amartus ® ddcomo Business

6.1. Framework validation: problems solved

49

Table 6.2: Governance validation: Risk mitigation through architectural implementation

Risk category

Mitigation approach

Described patterns

Hallucination &
Misinformation

Data Leakage &
Privacy

Cost Inflation

Vendor Lock-In

Model/Data
Drift

Compliance &
Audit Gaps

Citation requirements,
validator agents,
evaluation gates

Tiered data access, PII
redaction, audit logs

Cost budgets, token
limits, model tiering

Abstraction layers,
standardized tool
schemas

Scheduled evaluation,
drift detection,
automated alerts

Immutable trace logs
linking full decision
chain

Quality gates in Modeling phase (Section 2.4)
require cited sources; governance views based
on the Governance, Risk & Compliance
viewpoint (Section 3.2) document traceability
requirements; Multi-agent architecture
(Section 5.1) includes validation layer with
groundedness scoring

Data & Model Lifecycle views (Section 3.1)
document GOLD/SILVER/BRONZE tiers with
role-based permissions; immutable trace logs
documented in Runtime/Process views
(Section 3.3); Phase 1 risks (Section 2.2.3)
enforce encryption and redaction at API layer
Deployment phase (Section 2.5) monitors cost
per 1K requests; Financial KPIs (Chapter 4)
track telecom-specific savings (truck roll
avoidance, AHT reduction); Architecture
(Section 5.1) enables fast/slow model selection
based on request complexity

Multi-agent architecture (Section 5.1.3)
demonstrates gateway abstraction enabling
provider swaps; Phase 1 risks (Section 2.2.3)
emphasize abstraction layers; MCP (Model
Context Protocol) servers standardize tool
interfaces across LLM providers

Data & Model Lifecycle views (Section 3.1)
document drift thresholds; Quality KPIs
(Section 4.2) monitor feature/embedding drift;
automated review triggers quarantine stale data;
separate drift layers for ML features vs. text
embeddings

End-to-End Scenario views (Section 3.6) map
every request to versioned decisions documented
across all viewpoints; governance views
(Section 3.2) document audit requirements with
trace IDs, prompt hashes, model versions, and
policy enforcement timestamps

o
—e amartus
[] []

® ddcomo Business

6.2. Final recommendations 50

Counter-intuitively, governance accelerates adoption rather than slowing it. Stakeholders trust
systems they can audit: finance approves budgets with cost attribution, compliance unblocks
production deployment when trace logs exist.

The cumulative impact of addressing both execution and governance challenges - through explicit
KPIs, curated knowledge, automated quality gates, governed evolution, and embedded risk controls
- transforms the framework from a technical guide into an organizational enabler. Organizations
conclude Al is immature when structural discipline is missing, not when technology falls short.

6.2 Final recommendations

The framework validation above demonstrates how intentional design addresses telecom Al adop-
tion obstacles. Translating these patterns into organizational action requires strategic focus. The
following recommendations prioritize the choices that most consistently differentiate successful
deployments from stalled pilots.

Start narrow, prove value fast:

Pick one high-value process, define 3-5 measurable KPIs, curate a focused GOLD knowledge set
(100-500 documents), and prove measurable uplift in 60-90 days. The flywheel (Section 1.2)
begins with a scoped KPI gap - not a strategic vision, but a specific, testable hypothesis about
where Al can improve a concrete operational process.

Governance enables speed:

Embedding controls from day one accelerates adoption. As demonstrated in the governance
validation above (Section 6.1.2), controls transform from obstacles into enablers when architected
intentionally.

Design for reusability:

Invest in architectural patterns that enable multi-use-case reuse from the start. The three-layer
pattern (Section 5.1) - Orchestrator — Domain Agents — Tools - demonstrates this principle:
shared infrastructure components (authentication, LLM gateway, monitoring, knowledge retrieval)
remain stable across use cases while domain-specific logic evolves independently. This separation
of concerns enables faster second and third deployments by amortizing infrastructure investment
across multiple operational processes.

Evolve views incrementally:

Start with three core viewpoints (Data & Model Lifecycle, Runtime, Scenario), populate initial
views for each, add Governance and Physical views pre-deployment, and layer Capability views as
operational patterns emerge (Section 3.7). Let production telemetry guide evolution. Views are
living documents - two pages at pilot launch, ten pages six months into production, enriched with
operational learnings and incident post-mortems.

[]
R amartus ® ddcomo Business

6.3. Closing perspective 51

6.3 Closing perspective

The framework delivers on its core promise: breaking the telecom AI adoption trap through
intentional design. Not by waiting for perfect technology or comprehensive planning, but by
starting narrow, measuring rigorously, governing deliberately, and compounding value through
each iteration. The difference between stalled pilots and production success isn’t technical maturity
- it’s structural discipline.

Organizations that adopt this framework systematically won’t just deploy agents - they’ll build
organizational capability to evolve Al systems safely, measurably, and sustainably. That capability,
more than any single implementation, represents the framework’s ultimate value.

[]
R amartus ® ddcomo Business

52

A ML Workflow Blueprint - Key Aspects

This blueprint outlines a practical, step-by-step workflow for designing ML systems. It is based on
the “Machine Learning in Production” course by Andrew Ng, which offers a useful conceptual
baseline.

A.1 Phases descriptions

A.1.1 Scoping (define project)

* Decide which problem to solve with ML.
* Define X (inputs) and Y (outputs).
* Establish clear success criteria - what does “good enough” look like?

A.1.2 Data (define, label, organize)

* Define data requirements and assemble a baseline dataset.
* Collect, clean, and label data - this is often the most time-consuming stage.
* Ensure consistent formats, accurate labels, and representativeness.

A.1.3 Modeling (select, train, error analysis)

* Select appropriate ML model(s).

* Train iteratively and document experiments.

* Perform error analysis to identify systematic failures or bias.

* Loop back to data collection or model changes as lessons emerge.

A.1.4 Deployment (production, monitoring)

* Deploy the system into production and integrate with applications or services.

* Monitor live performance, data drift, and failures.

* Maintain the system: update models when distributions shift and retrain as needed.

* Treat deployment as a midpoint rather than an endpoint - long-term maintenance is critical.

o
R amartus ® décomoBusiness

https://www.coursera.org/learn/introduction-to-machine-learning-in-production/

A.2. Do’s and don’ts by stage

A.2 Do’s and don’ts by stage

A.2.1 Scoping

Do

* Clearly define the problem and success metrics.
* Confirm ML is the right tool - some tasks are better solved with rules or heuristics.
* Keep scope realistic.

Don’t
* Jump into modeling without clarity on the problem.

* Set vague goals (for example, “improve accuracy”) without measurable criteria.

A.2.2 Data

Do

* Collect diverse, representative data.

* Label consistently and audit annotations for errors.
» Split datasets properly (train/validation/test).

* Establish a baseline prior to training.

Don’t

* Assume more data always yields better results.
 Ignore class imbalance or rare categories.
* Mix training and test data (avoid leakage).

A.2.3 Modeling

Do

 Start with simple models before increasing complexity.

* Use error analysis to guide improvements and spot systematic mistakes.
* Iterate between model design and data fixes.

* Record experiments and hyperparameters for reproducibility.

Don’t

* Qverfit by optimizing only for validation accuracy.
* Treat modeling as a one-off activity.
* Ignore interpretability when stakeholders require it.

[]
R amartus ® ddcomo Business

A.2. Do’s and don’ts by stage

A.2.4 Deployment

Do

* Monitor for data drift and model degradation.

* Automate retraining and updates where practical.

* Log predictions and outcomes to close feedback loops.
* Treat maintenance as an ongoing responsibility.

Don’t

* Assume deployment equals completion - real-world feedback will change behavior.
* Overlook scalability, latency, or cost constraints.
* Neglect user feedback or ethical concerns such as fairness and privacy.

54

[]
R amartus ® ddcomo Business

	Introduction
	Why this framework exists
	Framework overview
	Reading guide

	Execution lifecycle
	Adapted workflow at a glance
	Phase 1: Scoping (Project definition)
	Phase 2: Data (Knowledge & context)
	Phase 3: Modeling (Agent design, ML integration & evaluation)
	Phase 4: Deployment (Production, ML Ops and monitoring)
	Putting it all together

	Architectural viewpoints
	Data & Model Lifecycle viewpoint
	Governance, Risk, and Compliance viewpoint
	Runtime/Process (Execution Topologies) viewpoint
	Capability/Development viewpoint
	Physical/Infrastructure viewpoint
	End‑to‑End Scenario viewpoint
	Applying viewpoints incrementally

	Key metrics & KPIs
	Metrics by lifecycle phase
	Metrics by architectural viewpoint
	Telecom-specific KPIs
	Metric interdependencies and trade-offs
	Application guidance

	Framework in action
	Multi-agent reference architecture
	Use case validation
	Implementation roadmap
	Conclusions

	Summary
	Framework validation: problems solved
	Final recommendations
	Closing perspective

	Appendices
	ML Workflow Blueprint - Key Aspects
	Phases descriptions
	Do's and don'ts by stage

